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Abstract— In this paper we will show how it is possible to 
build Information-aware schedulers able to outperform The 
Work Queue with Replication - Fault Tolerant 
Scheduler(WQR-FT). We propose different scheduling 
policies considering information about resources and 
applications. We will discuss two task selection policies and 
four machine selection policies that when combined give rise to 
8 different scheduling algorithms. As a matter of fact, the 
results obtained shows that it is possible to achieve better 
performance than WQR-FT and reduce the wasted CPU 
cycles. 
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I. INTRODUCTION 

The exploding popularity of the Internet has created a 
new much large scale opportunity for Grid computing. As a 
matter of fact, millions of desktop PCs, whose idle cycles 
can be exploited to run Grid applications, are connected to 
wide-area networks both in the enterprise and in the home. 
These new platforms for high throughput applications are 
called Desktop Grids [1, 2]. The inherent wide distribution, 
heterogeneity, and dynamism of Desktop Grids make them 
better suited to the execution of loosely-coupled parallel 
applications rather than tightly coupled ones. Bag-of-Tasks 
applications (BoT) [3, 4] (parallel applications whose tasks 
are completely independent from one another) have been 
shown [5] to be particularly able to exploit the computing 
power provided by Desktop Grids . 

In order to take advantage of Desktop Grid environments, 
suitable scheduling strategies, tailored to BoT applications, 
must be adopted. More specifically, these strategies must be 
able to deal with the heterogeneity of resources, the 
fluctuations in the performance they deliver because of the 
simultaneous execution of competing applications, and their 
failures due to crashes/reboots or unplanned departures 
from the Grid. In response to this need, various scheduling 
algorithms have been proposed in the literature [6, 7, 5, 8, 9, 
10], that typically attempt to minimize the makespan of 
BoT applications (that is, the time taken to execute all the 
tasks in a bag) in spite of resource heterogeneity, 
performance fluctuation, and failures.  

These algorithms employ Information-free schedulers 
that do not base their decisions on information concerning 
the status of resources or the characteristics of applications, 
Achieving good performance in these situations usually 
requires the availability of good information about both the 
resources and the tasks, so that a proper scheduling plan can 
be devised. Therefore, we focus on choosing which task to 
execute next (task selection), and the machine on which it 
will be executed (machine selection).So we have proposed 

two task selection policies and four machine selection 
policies that when combined  give rise to 8 different 
scheduling algorithms. As a matter of fact, the results 
obtained shows that it is possible to achieve better 
performance than WQR-FT and reduce the wasted CPU 
cycles. 

The rest of the paper is organized as follows. In Section 
II, we discuss the information -aware scheduling strategies 
proposed. In particular, we describe the information-aware 
task selection in Section III and the information-aware 
machine selection in Section IV. Combining the 
information-aware task selection with the information-
aware machine selection, we obtain various scheduling 
algorithms described in Section V. In Section VI, we 
present the results and, finally conclude the paper.  

II.  DEVISING INFORMATION -AWARE 

SCHEDULING STRATEGIES 

When developing a information-aware scheduler, the 
obvious starting point is the identification of the types of 
information that is reasonable to assume to be available to 
the scheduler. Roughly speaking, there are two types of 
information that can be exploited by a scheduler, namely 
the information about the characteristics of the tasks, and 
the information about the characteristics of machines.  

   In this paper we will show how it is possible to build 
Information-aware schedulers able to outperform WQR-FT. 
We will start by considering task selection first, and then 
we will move to machine selection. In particular, we will 
discuss two task selection policies (called GreatET and 
SmallET) and four machine selection policies (called 
NoInfo, CpuInfo, AvailInfo and AllInfo) that, when 
combined, give rise to 8 different scheduling algorithms.  

III. INFORMATION -AWARE TASK SELECTION 

In this section, we describe two possible approaches to 
improve task selection with respect to WQR-FT that, as 
already recalled, chooses at random the next task to be 
executed among those tasks having the smallest number of 
running instances (candidate tasks). Rather than choosing 
this task at random, we propose to exploit the information 
about the residual execution time of candidate tasks. In 
particular, we propose two task selection policies, that we 
call smallest residual execution time and greatest residual 
execution time (or SmallET and GreatET, respectively).  

In the SmallET, the scheduler selects the task with the 
smallest residual execution time, while, in GreatET, the 
scheduler selects the task with the greatest residual 
execution time. The residual execution time depends on 
when the last checkpoint has been saved for that particular 
task. In particular, if no checkpoint was saved the residual 
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execution time corresponds to the execution time, otherwise 
the residual execution time is the time needed to complete 
the task starting from the last checkpoint saved. Intuitively, 
the SmallET attempts to complete as soon as possible the 
smallest tasks, in order to have enough free hosts to submit 
replicas for the greatest tasks.  

IV. INFORMATION-AWARE MACHINE SELECTION 

As mentioned before, the second scheduling step consists 
in machine selection. Of course, the better the resource 
information that is available, the better the quality of the 
decisions that can be made by the scheduler. In this section, 
we discuss various scheduling policies that rely on 
increasing amounts of information and, as such, are able to 
obtain better performance (as shown later) at the expenses 
of higher costs of obtaining the information they need.  

A. Machine selection without information 

The first resource policy is very simple: it just selects the 
first available machine. This policy, called NoInfo, is 
illustrates in detail on Figure 1: it needs the set of resources 
contained in the Computational Grid (variable R, line 3) 
and a function called Avail(Ri) that returns true if the 
resource Ri is idle. For each resource (cycle for, line 6), 
NoInfo returns the first resource available (line 8), -1 
otherwise (that is there is no available machine, line 11). 

 

Figure 1.  NoInfo 

B. Information-aware machine selection based on 
computational power 

In this scenario, the scheduler is able to predict the 
computational power of the resources. This means that the 
scheduler can estimate the execution time of a specific task 
assigned to a specific resource. We propose a machine 
selection policy called CpuInfo that selects the available 
resource with the highest computational power. The 
rationale is that when there are fewer tasks to execute than 
ready hosts, this policy is a simple way of avoiding  picking 
the “slow” 

 

Figure 2.  CpuInfo 

hosts. Figure 2 illustrates in detail the CpuInfo policy, that 
uses two functions: CpuPwr(r) (line 4) is a function that 
returns the computational power  of resource r, while 
Avail(Ri) (line 5) is a function that returns true if resource 
Ri is ready to receive task to execute. Initially, the 
algorithm sets the first resource as the selected resource 
(slctRsc parameter on line 8) and its computational power is 
set as the temporary highest computation power 
(maxCpuPwr on line 7). In the for cycle (line 9), the 
algorithm updates the selected resource if another resource 
is available and it has a higher computation power than 
maxCpuPwr (lines 10, 11 and 12). At the end of the cycle, 
the variable slctRsc contains the selected resource. 

 

C. Information-aware machine selection based on 
availability 

In this scenario, the scheduler is able to predict the 
availability of the resources: namely, it is able to estimate 
the instant when a resource becomes unavailable. We 
propose a selection policy, called AvailInfo that selects the 
resource with the highest availability (that is, the resource 
that will become unavailable in the latest time). The 
rationale behind AvailInfo is to avoid (or to delay as much 
as possible) the occurrence of a machine failure during the 
execution of a task. In this way, a task can be completed 
without the resubmission due to the resources failures or, at 
least, it can live enough to save a "good" checkpoint (that is, 
a checkpoint which the residual execution time is small). 
Figure 3 illustrates in detail the AvailInfo policy. 

Figure 3.  AvailInfo 

This algorithm uses a function called Relia(r) (line 5) that 
returns the reliability level of resource r (that is, the amount 
of time from now to when the machine will become 
unavailable). Initially, the algorithm sets the first resource 
as the selected resource (slctRsc variable on line 8) and its 
reliability is set as the temporary best reliable resource 
(maxRelia variable on line 7). In the for cycle (line 9), the 
algorithm updates the selected resource if another resource 
is available and has a better reliability (lines 10, 11 and 12). 
At the end of the cycle, the variable slcRsc contains the 
selected resource. 

 
 
 

1: ---data structures and functions ----- 
2: M {is the number of resources} 
3: R {is the set of resources (Ri is the ith resource)} 
4: Avail(Ri){returns true if resource Ri is idle} 
5: ------- NoInfo algorithm ----- 
6: for i = 0 to M do 
7: if (Avail(Ri)) then 
8: return i; 
9: end if 
10: end for 
11: return -1; 

1: ---data structures and functions ----- 
2: M {is the number of resources} 
3: R {is the set of resources (Ri is the ith resource)} 
4: CpuPwr(r) {returns the computational power of resource r} 
5: Avail(Ri) {returns true if resource Ri is idle} 
6: ---CpuInfo algorithm----- 
7: maxCpuPwr=CpuPwr(R0); 
8: slctRsc=0; 
9: for i = 0 to M do 
10: if ((Avail(Ri)) AND (CpuPwr(Ri) > maxCpuPwr)) then 
11: maxCpuPwr=CpuPwr(Ri); 
12: slctRsc=i; 
13: end if 
14: end for 

1: ----- data structures and functions------ 
2: M {is the number of resources} 
3: R {is the set of resources (Ri is the ith resource)} 
4: Avail(Ri) {returns true if resource Ri is idle} 
5: Relia(r) {returns reliability of resource r} 
6: -----AvailInfo algorithm------ 
7: maxRelia=Relia(R0); 
8: slctRsc=0; 
9: for i = 0 to M do 
10: if ((Avail(Ri)) AND (Relia(Ri)>maxRelia)) 

then 
11: maxRelia=Relia(Ri); 
12: slctRsc=i; 
13: end if 
14: end for 
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D. Information about availability and computational power 

 
 In this scenario, the scheduler is able to predict both the 

availability and the computational power of the resources 
that is it is able to decide if a specific task can be completed 
in a specific machine without failure. This is due to the fact 
that, with full information about the resources, it is possible 
to calculate the execution time and determine if the task 
completion time precedes the fault event. We propose a  
selection policy, called AllInfo, that for each task in the 
BoT, it selects the available resource with the highest 
computational power able to complete the task considered 
without failure. If there is no one resource able to complete 
the task without failure, the AllInfo scheduling policy 
selects the most powerful machine (as CpuInfo). Figure 4 
illustrates in detail the AllInfo policy. This policy uses a 
function called ET(r; t) (line 3) that returns the execution 
time of task t submitted on resource r. Initially, the 
algorithm sets the first resource as the selected resource 
(slctRsc variable on line 8) and its computational power is 
set as the temporary most powerful resource (maxCpuPwr 
variable on line9). In the for cycle (line  

 10), the algorithm updates the selected resource if 
another resource is available, is able to complete the task 
without failure and, finally, has a better reliability (lines 11, 
12 and 13). At the end of the cycle, the variable slctRsc 
contains the selected resource. 

Figure 4.  AllInfo 

V. SCHEDULING POLICIES 

Combining the task selection policies with the resource 
selection policies, we obtain 8 different scheduling 
algorithms (as we can observe in Table I). In this section, 
we discuss the characteristics of each scheduling policy 
proposes.  

TABLE I 

SCHEDULING POLICIES 

 
 

In order to simplify our discussion throughout the paper 
we will use a running example in which we consider 4 tasks 
(whose characteristics are reported in Table II) to be 
scheduled on 4 machines (whose features are listed in Table 
III). With this running example, we can observe the various 
performance of the scheduling algorithms propose in the 
same scenario. 

TABLE II 

WORKLOAD EXAMPLE                                           

 
 
 
 
 
 
 
 

TABLE III  

COMPUTATIONAL GRID EXAMPLE 

 
 
 
 
 
 
 
 
For each scheduling algorithm presented in this paper, 

we will show its scheduling decisions, the execution time 
for each task assignment and we note if the task will be 
completed without resubmission (that is, the task will not 
incur in a fault). In Table IV, we show the assignments 
computed by WQR-FT(first column), the correspondent 
execution time (second column) and, finally the outcome of 
the assignment (third column). In particular, for our running 
example, the WQR-FT scheduling algorithm is able to 
complete only 2 tasks without resubmission, and we can 
note some "bad" decision as assign a long task (T0) to a 
slow resource (Rsc0). 

 
TABLE IV 

 ASSIGNMENTS COMPUTED BY WQR-FT SCHEDULING Algorithm 

 
Combining the policies SmallET and GreatET with NoInfo, 
we obtain two new scheduling algorithms called SmallET-
NoInfo and GreatET-NoInfo. In the first case, as we can 
observe in Table V, the SmallET-NoInfo scheduling policy 
selects the task from the shortest to the longest (that is, the 
task order selection is T1, T2, T3 and T0) assigning them to 
the available resources. For simplicity, we assume that the 
selection order for the resources is Rsc0, Rsc1, Rsc2 and 
Rsc3. Thus, SmallET-NoInfo completes the following 

1: ----- data structures and functions----- 
2: M {is the number of resources} 
3: ET(r,t) {is the execution time of task t on resource r} 
4: Avail(Ri) {returns true if resource Ri is idle} 
5: R {is the set of resources (Ri is the ith resource)} 
6: t {is the task selected} 
7: ----AllInfo algorithm----- 
8: slctRsc=R0; 
9: maxCpuPwr=CpuPwr(R0); 
10: for i = 0 to M do 
11: if ((Avail(Ri)) AND (Relia(Ri)>ET(Ri,t)) AND 
(CpuPwr(Ri)>maxCpuPwr)) then 
12: maxCpuPwr=CpuPwr(Ri); 
13: slctRsc=i; 
14: end if 
15: end for 

 NoInfo CpuInfo AvailInfo AllInfo 

SmallET SmallET- 
NoInfo 

SmallET-
CpuInfo 

SmallET-
AvailInfo 

SmallET-
AllInfo 

GreatET GreatET- 
NoInfo 

GreatET-
CpuInfo 

GreatET-
AvailInfo 

GreatET-
AllInfo 

Task 
 

Execution 
Time (ET) 
 

T0 200 

T1  20 

T2 100 
T3 160 

Resource 
 

Computational Power 
(CpuPwr) 

Fault 
event 

Rsc0 1 100 
Rsc1 20 40 
Rsc2 10 160 
Rsc3 4 20 

Assignment 
 

Completion Time(CT) Completed 

T0=>Rsc0 200 NO 
T1=>Rsc1 1 YES 
T2=>Rsc2 10 YES 
T3=>Rsc3 40 NO 
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assignments: T1 => Rsc0, T2 => Rsc1, T3 => Rsc2 and T0 
=> Rsc3. Comparing these assignments with the WQR-FT, 
we note that SmallET is able to complete one more task 
without resubmission, and the greatest completion time is 
equal to 50 seconds (T0 => Rsc3). 

TABLE V 

ASSIGNMENTS COMPUTED BY SMALLET-NOINFO SCHEDULING 

ALGORITHM 

 
 
 
 
 
 
 
 

 
Conversely, the GreatET-NoInfo selects the tasks in this 
order: T0, T3, T2 and T1. As we can observe in Table VI, 
the GreatET-NoInfo is able to complete 3 tasks over 4, and 
the greatest completion time is equal to 100 (T0 => Rsc0). 
Thus, the GreatET-NoInfo is better than WQR-FT (since 
GreatET-NoInfo completes one more task) but worse than 
SmallET-NoInfo (SmallET-NoInfo completes the same 
number of tasks and the greatest completion time is 50)   

 

TABLE VI 

 ASSIGNMENTS COMPUTED BY GREATET-NOINFO SCHEDULING 

ALGORITHM 

 
 
 
 
 
 
 
 

 
 

  Supposing to have information about computational 
power of the resources, we can combine the task selection 
policy with CpuInfo obtaining two new scheduling policies: 
SmallET-CpuInfo (that assigns the task with the smallest 
residual time to the most powerful resource available) and 
greatET-CpuInfo (that assigns the task with the greatest 
residual time to the most powerful resource available). The 
rationale behind the SmallET-CpuInfo is to complete the 
smallest tasks first in order to have more machines 
available to send replicas of the greater tasks as soon as 
possible. Conversely, the rationale behind the GreatET-
CpuInfo is to assign the greatest tasks to the fastest machine 
to complete them as soon as possible since the average BoT 
completion time often depends on the completion of the 
greatest task. Observing the data in Table VII, we note that 
SmallET-CpuInfo scheduling algorithm is able to complete 
just two tasks without resubmission and the slowest 
execution time is equals to 100 (T0 => Rsc0) 

 
 
 

TABLE VII 

 ASSIGNMENTS COMPUTED BY SMALLET-CPUINFO SCHEDULING 

ALGORITHM 

 

 
 
 
 
 
 
 
Conversely, the GreatET-CpuInfo scheduling algorithm 

has better performance with respect to SmallET-CpuInfo: 
as we can observe from Table VIII, the GreatET-CpuInfo is 
able to complete three tasks over four without resubmission 
and the slowest completion time is just 25 seconds (T2 => 
Rsc3). 

TABLE VIII 

ASSIGNMENTS COMPUTED BY GREATET-CPUINFO SCHEDULING 

ALGORITHM 

 
 
 
 
 
 
 
  

Other two scheduling policies can be obtained combining 
the task select policies with AvailInfo. In this case, we have 
SmallET-Avail Info that assigns the smallest task to the 
most reliable machines and GreatET-AvailInfo that assign 
the greatest task to the most reliable machine. In Table IX, 
we observed the assignments of the SmallET-AvailInfo 
scheduling policy: the algorithm is able to complete three 
tasks within 50 seconds (T2 =>Rsc0). Conversely, the 
GreatET-Avail Info scheduling policy is able to complete 
three tasks and the slowest execution time is 80 seconds (T3 
=>Rsc0), as we can observe in Table X. Finally, if the 
scheduler is able to predict both the availability and the 
computational power of the resources, it can use two new 
scheduling policies: SmallET-AllInfo and GreatET-AllInfo. 
In Table XI, we can observe the scheduling decisions of 
SmallET-AllInfo. This scheduling algorithm is able to 
complete just two tasks and the slowest execution time is 
100 second 

TABLE IX 

ASSIGNMENTS COMPUTED BY SMALLET-AVAILINFO SCHEDULING 

ALGORITHM 

Assignment Completion 
Time(CT) 

Completed 

T1 => Rsc2 2 Yes 

T2 => Rsc0 100 Yes 

T3 => Rsc1 8 Yes 

T0 => Rsc3 50 No 

 

 

Assignment Completion 
Time (CT) 

Completed 

T1 => Rsc0 20 Yes 

T2 => Rsc1 5 Yes 

T3 => Rsc2 16 Yes 

T0 => Rsc3 50 No 

Assignment Completion 
Time(CT) 

Completed 

T0 => Rsc0 200 No 

T3 => Rsc1 8 Yes 

T2 => Rsc2 10 Yes 

T1 => Rsc3 5 Yes 

Assignment Completion 
Time(CT) 

Completed 

T1 => Rsc1 1 Yes 

T2 => Rsc2 10 Yes 

T3 => Rsc3 40 No 

T0 => Rsc0 200 No 

Assignment Completion 
Time(CT) 

Completed 

T0 => Rsc1 10 Yes 
T3 => Rsc2 16 Yes 

T2 => Rsc3 25 No 

T1 => Rsc0 20 Yes 
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TABLE X 

 ASSIGNMENTS COMPUTED BY GREATET-AVAILINFO SCHEDULING 

ALGORITHM 

TABLE XI 

 ASSIGNMENTS COMPUTED BY SMALLET-ALLINFO SCHEDULING 

ALGORITHM 

  
 
 
 
 
 
 
 

(T0 =>Rsc0). In Table XII, we can observe the scheduling 
decisions of GreatET-AllInfo. This scheduling algorithm is 
able to complete all tasks the slowest execution time is 50 
seconds (T2 => Rsc0). In our example,GreatET-AllInfo is 
the only one scheduling policy that is able to complete all 
tasks without resubmission, as we can observe in the 
summary table XIII. In this last table, for each scheduling 
policy, we report the number of tasks completed without 
resubmission and the time necessary to complete them. 

TABLE XI1 

ASSIGNMENTS COMPUTED BY GREATET-ALLINFO SCHEDULING 

ALGORITHM 

 

 

 

 

 

 

 

TABLE XIII 

 SUMMARY OF THE SCHEDULING ALGORITHMS PERFORMANCE FOR OUR 

RUNNING EXAMPLE 

 

 

VI. PERFORMANCE ANALYSIS 

In order to assess the performance of the scheduling 
policies proposed, we compare them with the plain WQR-
FT. Our comparison is based on metric: average no of 
completed tasks 

A. Results 

In this section, we described the results we obtained in our 
experiments. In order to verify if the policies proposed 
achieve better performance than plain WQR-FT, we 
performed a set of experiments in which we progressively 
increase the number of tasks for each bag (the parameter 
called RR), computed the average No of completed tasks 
with respect to WQR-FT. 
    In particular, Figure 5(a) illustrates the average No of 
completed tasks of SmallET-NoInfo and GreatET-NoInfo  
relative to WQR-FT, for different values of RR. As we can 
observe, the GreatET-NoInfo & SmallET-NoInfo 
scheduling policy achieves better performance with respect 
to WQR-FT.  
 

 
 

Fig. 5 Average No of  completed tasks with respect to WQR-FT 

 
In particular, when RR = 4, GreatET-NoInfo is able to 
complete the BoT almost 25% faster than WQR-FT.  
In Figure 5(b),(c),(d), we illustrates the performance of the 
scheduling policies for the various levels of  information  
We can observe that the policies GreatET-* (that is, 
GreatET-NoInfo, GreatET-CpuInfo, GreatET-AvailInfo) 
achieve similar performance independently from the 
information about the resources & the policies SmallET-* 
(that is, SmallET -NoInfo, SmallET- AvailInfo) achieve 
similar performance independently from the information 
about the resource.  
 In Figure 5(b), we observe the average BoT completion 
time of the scheduling strategies SmallET-CpuInfo and 
GreatET-CpuInfo relative to WQR-FT. Choosing the 
resource based on their computation power introduce 
benefits for GreatET -CpuInfo scheduling policiy. For 
instance GreatET-CpuInfo outperforms WQR-FT and this 
is due, once again, to the importance of having information 
about the computational power of the resources. Observing 
Figure 5(c), we can note that the information about the 
availability is  important than the information about the 
computational  power. As a matter of  the fact, the 

Assignment Completion Time(CT) Completed 

T0 => Rsc2 20 Yes 
T3 => Rsc0 160 No 
T2 => Rsc1 5 Yes 

T1 => Rsc3 5 Yes 

Assignment Completion 
Time(CT) 

Completed 

T1 => Rsc1 1 Yes 
T2 => Rsc2 10 Yes 

T3 => Rsc3 40 No 

T0 => Rsc0 200 No 

Assignment Completion 
Time(CT) 

Completed 

T0 => Rsc1 10 Yes 

T3 => Rsc2 16 Yes 

T2 => Rsc0 100 Yes 

T1 => Rsc3 5 Yes 

Scheduling policy 
Final Completion 
Time(FCT) 

Num. of tasks 
completed 

WQR-FT 10 2 
SmallET-NoInfo 20 3 
GreatET-NoInfo 10 3 
SmallET-CpuInfo 10 2 
GreatET-CpuInfo 20 3 
SmallET-AvailInfo 100 3 
GreatET-AvailInfo 20 3 
SmallET-AllInfo 10 2 
GreatET-AllInfo 100 4 
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SmallET-Availinfo  achieves better performances than 
SmallET-CpuInfo.Finally, combining availability 
information and computational power of the resource we 
are able to achieve good performance. For instance 
GreatET-AllInfo outperforms GreatET-CpuInfo  and this is 
due, once again, to the importance of having information 
about the computational power & availability information 
of the resources. GreatET-AllInfo is the best scheduling 
policy in term  of the average BoT completion time 
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